An Eecient Stochastic Approximation Algorithm for Stochastic Saddle Point Problems

نویسنده

  • Reuven Y. Rubinstein
چکیده

We show that Polyak's (1990) stochastic approximation algorithm with averaging originally developed for unconstrained minimization of a smooth strongly convex objective function observed with noise can be naturally modiied to solve convex-concave stochas-tic saddle point problems. We also show that the extended algorithm, considered on general families of stochastic convex-concave saddle point problems, possesses a rate of convergence unimprovable in order in the minimax sense. We nally present supporting numerical results for the proposed algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Randomized Mirror-Prox Method for Solving Structured Large-Scale Matrix Saddle-Point Problems

In this paper, we derive a randomized version of the Mirror-Prox method for solving some structured matrix saddle-point problems, such as the maximal eigenvalue minimization problem. Deterministic first-order schemes, such as Nesterov’s Smoothing Techniques or standard Mirror-Prox methods, require the exact computation of a matrix exponential at every iteration, limiting the size of the problem...

متن کامل

On the parallel solution of dense saddle-point linear systems arising in stochastic programming

We present a novel approach for solving dense saddle-point linear systems in a distributedmemory environment. This work is motivated by an application in stochastic optimization problems with recourse, but the proposed approach can be used for a large family of dense saddle-point systems, in particular those arising in convex programming. Although stochastic optimization problems have many impo...

متن کامل

The parallel solution of dense saddle-point linear systems arising in stochastic programming

We present a novel approach for solving dense saddle-point linear systems in a distributedmemory environment. This work is motivated by an application in stochastic optimization problems with recourse, but the proposed approach can be used for a large family of dense saddle-point systems, in particular those arising in convex programming. Although stochastic optimization problems have many impo...

متن کامل

Optimal Primal-Dual Methods for a Class of Saddle Point Problems

We present a novel accelerated primal-dual (APD) method for solving a class of deterministic and stochastic saddle point problems (SPP). The basic idea of this algorithm is to incorporate a multi-step acceleration scheme into the primaldual method without smoothing the objective function. For deterministic SPP, the APD method achieves the same optimal rate of convergence as Nesterov’s smoothing...

متن کامل

A Stochastic Approximation Algorithm for Maximum Likelihood Estimation with Incomplete Data

We propose a new stochastic approximation (SA) algorithm for maximum likelihood estimation (MLE) in the incomplete data setting. This algorithm is most useful for problems when the EM algorithm is not possible due to an intractable E-step or M-step. Compared to other algorithms that have been proposed for intractable EM problems such as the MCEM algorithm of Wei and Tanner (1990), our proposed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007